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Proposition 6.1 of the paper is not correct, a fact which impacts a number of statements
and conclusions. The note provides the necessary adjustments for the statement and
the main corollaries to hold true, including Theorem 1.1. Basically, all the results are
still true up to some logarithmic corrections.

The paper under correction is referenced below as [1], and all the notation are taken
from it, although a few basic objects and definitions are recalled for convenience.
Further results and generalizations of the Fourier analytic bounds obtained in [1] can
be stated in terms of Zolotarev distances [3].

1 General Fourier Analytic Bounds

With any two probability measures μ and ν on the d-dimensional torus Qd =
(−π, π ]d , we associate their Fourier-Stieltjes transforms

fμ(m) =
∫
Qd

eim·x dμ(x), fν(m) =
∫
Qd

eim·x dν(x), m ∈ Z
d .
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Proposition 6.1 in [1] asserts that

W̃ω(μ, ν) ≤ √
d

( ∑
m �=0

ω2
( π

|m|
)

| fμ(m) − fν(m)|2
)1/2

. (1)

Here ω : [0,∞) → [0,∞) is an arbitrary modulus of continuity (a subadditive
continuous function such that ω(0) = 0, ω(δ) > 0 for δ > 0) and W̃ω denotes the
transport (Kantorovich) distance with respect to the metric

ρ̃(x, y) = ω(‖x − y‖), x, y ∈ Qd ,

where ‖z‖ denotes the shortest Euclidean distance from a point z to the lattice 2πZd .
Let us recall that

W̃ω(μ, ν) = inf
λ

∫
Qd

∫
Qd

ρ̃(x, y) dλ(x, y)

where the infimum runs over all probability measures λ on Qd × Qd with marginals
μ and ν.

Although the inequality (1) is true for the standard modulus of continuity ω(δ) = δ

(even with a dimension-free coefficient, cf. [2]), in the general case including
ω(δ) = δα , 0 < α < 1, it needs to be corrected. This issue is deeply connected
with embedding problems of fractional Sobolev spaces among which are the Lips-
chitz classes Lip(α), cf. [4].

The relation (1) will be saved if we put an additional logarithmically growing
factor inside the sum on the right-hand side. For a precise statement, fix an arbitrary
non-decreasing function q : [1,∞) → (0,∞) such that

C2
q =

∞∑
k=0

1

q(2k)
< ∞ (Cq > 0). (2)

Proposition 6.1 (Corrected version) Given two probability measures μ and ν on Qd,

W̃ω(μ, ν) ≤ Cq
√
d

( ∑
m �=0

q(|m|) ω2
( π

|m|
)

| fμ(m) − fν(m)|2
)1/2

. (3)

For example, the choice q(x) = log1+ε(2x) with a parameter ε > 0 leads to

W̃ω(μ, ν) ≤ Cε

√
d

( ∑
m �=0

log1+ε(2|m|) ω2
( π

|m|
)

| fμ(m) − fν(m)|2
)1/2

with constant Cε depending on ε only.
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Proof At the end of proof of Proposition 6.1 in [1] we derived the upper bound

∑
2k−1≤|m|<2k

|am | | fμ(m) − fν(m)| ≤ √
d ω(π 2−k) bk

with

bk =
( ∑

2k−1≤|m|<2k

| fμ(m) − fν(m)|2
)1/2

.

Only the very last step has to be corrected. Performing summation over all k ≥ 1 and
introducing the q factor, Cauchy’s inequality yields

( ∑
m �=0

|am | | fμ(m) − fν(m)|
)2 ≤ d

∞∑
k=1

1

q(2k−1)

∞∑
k=1

q(2k−1) ω2(π 2−k) b2k .

Here thefirst sum is equal to the constantC2
q in (2).Bymonotonicity,q(2k−1) ≤ q(|m|)

for 2k−1 ≤ |m| < 2k . Hence the second sum does not exceed the sum in (3). 
�
Another version of Proposition 6.1 from [1] was given in Proposition 6.3. With the

same argument, it should be corrected to the form

W̃ω(μ, ν) ≤ 2Cq

( ∑
m �=0

q(|m|) ω2
(π

√
d/2

|m|
)

| fμ(m) − fν(m)|2
)1/2

. (4)

Several general bounds in [1], consequences of the preceding and related to the
smoothing operations, should be corrected accordingly by adding the factor q(|m|)
inside the sums and the coefficient Cq in front. In particular, using again a non-
decreasing function q satisfying (2), the main result, Theorem 1.1, should read as
follows. The transport distance Wω in this statement (and below) is defined similarly
to W̃ω with respect to the metric ρ(x, y) = ρ̃(x, y) = ω(|x − y|) on the cube [0, π ]d .
Theorem 1.1 (Corrected version)Given two probability measuresμ and ν on [0, π ]d ,
for any modulus of continuity ω and any t > 0,

Wω(μ, ν) ≤ Cq
√
d

( ∑
m �=0

q(|m|) ω2
( π

|m|
)
e−t |m|2 | fμ(m) − fν(m)|2

)1/2

+ 6ω(
√
dt).

(5)

The proof of Theorem 1.1 follows the lines developed in Sect. 7 of the original
paper, together with the new version of Proposition 6.1. Clearly, the statement of
Proposition 7.1 therein has to be modified accordingly incorporating the additional
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weight q. Namely, the inequality (7.4) should take the form

Wω(μ, ν) ≤ Cq
√
d

( ∑
m �=0

q(|m|) ω2
( π

|m|
)

| fμ(m) − fν(m)|2 |h(m)|2
)1/2

+6ω(E(|H |)),

where h is the characteristic function of a random vector H in R
d , and μ and ν are

probability measures supported on [0, π ]d . Remark 7.2 is modified similarly.
The statements in [1] involving other choices of smoothing probability distribu-

tions, such as the ones having compactly supported characteristic functions, should be
modified similarly. For example, as a direct consequence of (3), inequality (1.6) in [1]
should be replaced by, for every T > 0,

Wω(μ, ν) ≤ Cq
√
d

( ∑
1≤‖m‖∞≤T

q(|m|) ω2
( π

|m|
)

| fμ(m) − fν(m)|2
)1/2

+ 6ω
(√

12d

T

) (6)

where ‖m‖∞ = max(|m1|, . . . , |md |) for m = (m1, . . . ,md) ∈ Z
d .

It is possible to derive a version of (6) without the q-factor but up to some additional
logarithmic factor of T . Indeed, in view of the range of summation, it is sufficient
to require that the function q(x) be defined in the interval 1 ≤ x ≤ T

√
d . For

simplification, one may use q(|m|) ≤ q(T
√
d). Moreover, the quantityC2

q q(T
√
d) is

minimized when all q(2k) are equal to each other for 2k ≤ T
√
d. Since this inequality

is fulfilled for at most 1 + log2(T
√
d) values of k, (6) yields

Wω(μ, ν) ≤
√
d log2(2T

√
d)

( ∑
1≤‖m‖∞≤T

ω2
( π

|m|
)

| fμ(m) − fν(m)|2
)1/2

+ 6ω
(√

12d

T

)
.

(7)

Thus, with respect to (1.6) in [1], there is an additional factor of order
√
log T in front

of the sum on the right-hand side.

2 Empirical Measures

Theorem 1.1 with a general q-factor can be applied to empirical measures

μn = 1

n

n∑
k=1

δXk , νn = 1

n

n∑
k=1

δYk
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associated to random vectors X1, . . . , Xn and Y1, . . . ,Yn with values in [0, π ]d . The
inequality (5) yields the corresponding correction of Proposition 2.1 in [1].

Proposition 2.1 (Corrected version) Suppose that the couples (Xk,Yk) are pairwise
independent and that Xk and Yk have equal distributions for every k ≤ n. For any
t > 0,

cE (Wω(μn, νn)) ≤ Cq

√
d√
n

( ∑
m �=0

q(|m|) ω2
( π

|m|
)
e−t |m|2

)1/2

+ ω(
√
dt) (8)

with an absolute constant c > 0. Moreover, if all Xk, Yl are independent, a similar
inequality also holds for the ψ2-norm of Wω(μn, νn) in place of the L1-norm.

As another variant based on the application of (6), we also have

cE (Wω(μn, νn)) ≤ Cq

√
d√
n

( ∑
1≤‖m‖∞≤T

q(|m|) ω2
( π

|m|
) )1/2

+ ω
(√

d

T

)
,

which should replace the inequality (2.5) in [1]. Also, the weaker version (7) gives

cE (Wω(μn, νn)) ≤
√
d log(2T

√
d)√

n

( ∑
1≤‖m‖∞≤T

ω2
( π

|m|
) )1/2

+ ω
(√

d

T

)
. (9)

We now specialize Proposition 2.1 to the modulus of continuity ω(δ) = δα with
parameter 0 < α < 1, in which case the Kantorovich distance becomes the Zolotarev
distance Wω = ζα . Then the transport bounds (8)–(9) may easily be simplified by
optimizing the right-hand sides over t > 0 and T > 0.

Let us start with dimension d = 1 and apply (8)–(9) which respectively yield

cE (ζα(μn, νn)) ≤ Cq
1√
n

( ∞∑
m=1

q(m)

m2α e−tm2
)1/2

+ tα/2 (10)

and

cE (ζα(μn, νn)) ≤
√
log T√
n

( ∑
1≤m≤T

1

m2α

)1/2

+ 1

T α
(11)

with arbitrary t > 0 and T ≥ 1.
If α > 1

2 , one may choose q(x) = log2(2x) in (10) and let t → 0. In this range,
the conclusion of Corollary 3.2 of [1] is not modified, with the standard rate

E (ζα(μn, νn)) ≤ cα√
n

and constant cα ∼ ( ∫ ∞
1 x−2α log2 x dx

)1/2 = (2α − 1)−3/2 (where the equivalence
is understood within absolute positive factors)
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When α ≤ 1
2 , there are additional logarithmic factors. If α = 1

2 , then choosing
T = n in (11), we obtain

E (ζα(μn, νn)) ≤ c
log(2n)√

n
. (12)

If α < 1
2 , a similar choice leads to

E (ζα(μn, νn)) ≤ cα

nα

√
log(2n)

for some constant cα > 0 depending on α only. All these bounds can be sharpened in
terms of ψ2-norms as discussed in [1].

The value α = 1
2 is therefore critical, in the sense that the rate in the upper bound

is changing for smaller values of the parameter α. This threshold phenomenon was
already emphasized in [1] in connection with Bernstein’s theorem on the absolute
convergence of Fourier series for Lipschitz classes Lip(α).

If d ≥ 2, the rates are different and depend on d. Namely, using (9) we get that, for
all 0 < α < 1,

E (ζα(μn, νn)) ≤ cα(d)

nα/d

√
log(2n) (13)

with some constants cα(d) depending on α and d only. This bound should replace the
one in Corollary 3.3 in [1]. It is interesting that (13) is optimal with respect to n for
the critical value α = 1 in dimension d = 2 and represents the contents of the AKT
theorem [2] (however, this cannot be achieved on the basis of (9)).

3 Minimax Grid Matching

Let us recall that, for two collections of points X = {x1, . . . , xn} and Y = {y1, . . . , yn}
in the unit interval [0, 1], the minimax matching length is defined to be

L(X ,Y ) = min
σ

max
1≤k≤n

|xk − yσ(k)|,

where the minimum is running over all permutations σ of {1, . . . , n}.
If X and Y are independent samples drawn from a given distributionμ, theminimax

grid matching problem is to find the rate of E (L(X ,Y )) at which it tends to zero as
n → ∞. When μ is a uniform distribution, it was shown by T. Leighton and P. Shor
that

E
(
L(X ,Y )

) ∼ 1√
n
.

Using the corrected version of Corollary 3.2 of [1] in the form (12), one can sharpen
this standard rate, if counting not all, but most of the points in perfect matching.
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Namely, for a (non-empty) subset I of {1, . . . , n}, we defined the restricted minimax
matching length

LI (X ,Y ) = min
σ

max
k∈I |xk − yσ(k)|,

still assuming that the minimum is running over all permutations σ of {1, . . . , n}.
Since the right-hand side of the inequality (12) has an additional factor

√
log(2n) in

comparison to Corollary 3.2, a slight logarithmic correction is also needed in Propo-
sition 4.1 of [1], replacing the original log2(2n) by log3(2n). As before, there is no
need to keep the assumption that the distributions of the components Xk are identical.

Proposition 4.1 (Corrected version) Let Y = (Y1, . . . ,Yn) be an independent copy of
the random vector X = (X1, . . . , Xn) which has independent coordinates with values
in [0, 1]. With high probability, for each ε > 0, there is a (random) set I ⊂ {1, . . . , n}
of cardinality |I | ≥ (1 − ε) n such that

LI (X ,Y ) ≤ Cε

log3(2n)

n
,

where one may take Cε = C/ε2 with an absolute constant C.
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